

SAHANA Profiling

Importance of profiling

 If it is required to carry out a code optimization task, the developer should know about
performance bottlenecks within the system. Otherwise the optimization process would be not effective.
if we take the SAHANA system there are so many functions execute to deliver an output. To optimize
the SAHANA system we should identify expensive functions those are worth optimizing. To identify
expensive functions those may be bottlenecks a profiling exercise should be carried out

To profile the system we use �Xdebug(http://xdebug.org/)� module and �Kcachegrind
(http://kcachegrind.sourceforge.net)� visualization tool.

Profiling plan

 We start the profiling task with SAHANA index.php file without requesting any other module.
by doing that we expect to identify bottlenecks within the SAHANA framework and to present the
information flow.
 Then we profile each module at a time to identify issues within those modules

Profiling Index.php

 When the index.php file is requested there will be so many functions executed. The following
diagram represents all functions.

id5049968 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

In the above diagram empty rectangles mean there are no further functions execute within that

function. We should filter out important functions those are worth optimizing.
 It is important to select most expensive functions for the optimization process to make the
overall process effective. The following diagram show most expensive function in terms of memory
usage and time consumption.

 In the above diagram the tab �self� indicates the time spent within the respective function. And
the tab �incl� represents the time spent within the function with other child functions. So it displays the
inclusive cost where as the �self� tab indicates the exclusive cost. The �called� tab represents the
number of calls for the respective function.
 As an example 16.42% of the cost is incurred within the handler_db.inc including its child
functions. Direct functions within that script take 7.42% of the time.

By analyzing the above diagram we can say that most expensive segments for the index.php are
within the handler_db.inc, HTMLPurifier, Open-Id and lib_config.inc, etc.

If we further analyze the execution we can determine most expensive parts as displayed in the
following image.

 From the total execution time which is 100.43% (it is more than 100% since it shows the
inclusive cost)

 HTMLPurifier takes 44.8% ,
 handler_db.inc takes16.42% ,
 shn_config_load_in_order() function takes 7.04% ,
 shn_main_front_controller() function takes 6.23% ,
 lib_crypt.inc takes 5.63% ,
 handler_openid.inc takes 4.5% ,

of the process time.

So it is advisable to concentrate only on those parts when handling the optimization process.

 The utilization of the process time can be further explained using the following graph

 As it is clearly displayed the time is mainly shared among 5 parts listed above. And the
HTMLPurifier has some more expensive segments.
 The following section would analyze expensive segments thoroughly

Front Controller

 As indicated above the shn_main_front_controller () takes 6.23% of the execution time. All
notable functions within that is displayed below

We can see that ADOdb Execute function,shn_get_all_modues() and Functions within XST module are
responsible for the execution overhead.

The graph view of the execution process is displayed below

Handler_db

 As indicated above functions within handler_db.inc takes 16.42% of the execution time. All
notable functions within that is displayed below

 We can see that most of the overhead is spent on ADOdb functions. The graph view of the
execution process is displayed below

Handler_openid

 As indicated above functions within handler_openid.inc takes 4.50% of the execution time. All
notable functions within that is displayed below

The graph view of the execution process is displayed below

HTMLPurifier

 Functions within HTMLPurifier take 44.08% of the execution time. All notable functions within
that is displayed below

It can be seen that there are so many functions executed within html purifier. We can further
analyze using the graph view.

Lib_crypt

 Functions within lib_crypt take 5.63% of the execution time. All notable functions within that is
displayed below

The graph view is displayed below

Shn_config_load_in_order

 Function shn_config_load_in_order () and its children take 7.04% of the execution time. All
notable functions within that is displayed below

 We can see that the function shn_config_module_conf_fetch() is responsible for 4.53% of the
CPU time. The graph view is displayed below.

Conclusion

 It is evident that HTML Purifier is taking a lot of execution time. There might be so many html
violations that trigger the purifier. if we consider HTMLModuleManager.php file there are about 40
require_once which makes that thing costly. if it is possible it is better to comment some unnecessary
require calls. Anyway it is not acceptable to consume about half of the computational resources for this
non-functional issue. It is advisable to manually check for HTML errors before submitting page to the
code base.
 The time taken by the handler_db is quite acceptable since it execute a lot of queries those are
mandatory to function the system properly. But most of the time is taken by ADOConnection-
>LogSQL() method which is not extremely important. That method logs all sql queries, time and
parameters. that method can be disabled by ADOConnection->LogSQL($enable = false) command.
For more information refer
http://phplens.com/adodb/reference.functions.fnexecute.and.fncacheexecute.properties.html .
 The function shn_config_module_conf_fetch() consume considerable cpu time because it loads
the conf.inc from each module. There is a while loop which makes that function costly.

http://phplens.com/adodb/reference.functions.fnexecute.and.fncacheexecute.properties.html

